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Abstract. We give a construction of impurity operators in the ‘algebraic analysis’ picture of
RSOS models. Physically, these operators are half-infinite insertions of certain fusion-RSOS
Boltzmann weights. They are the face analogue of insertions of higher-spin lines in vertex models.
Mathematically, they are given in terms of intertwiners of U, (sk) modules. We present a detailed
perturbation theory check of the conjectural correspondence between the physical and mathematical
constructions for a particular simple example.

1. Introduction

The ‘algebraic analysis’ approach to solvable lattice models was developed by the Kyoto
group in the 1990s [1]. The key feature of this approach is to identify the half-infinite
space on which the corner transfer matrix acts with an infinite-dimensional module of the
underlying non-Abelian symmetry algebra of the lattice model. The simplest example is the
anti-ferromagnetic six-vertex model, in which the halfinﬁnite space is identified with V (A;),
a level-one highest-weight module of the algebra U, (sl ) [1,2]. The choice of the subscript
i € {0, 1} corresponds to the choice of one of the two possible anti-ferromagnetic boundary
conditions. A somewhat more complicated example is that of RSOS models [3]. Here, the
half-infinite space is identified with the space 2 ;.; that occurs in the decomposition of the
tensor product of U, (sl,) highest-weight modules

VE VI =PV ® Q.
A

where & and 5 are level-(k — n) and level-n dominant integral weights, and the sum is over all
level-k dominant integral weights (see [3] and below for more details). Again, the choice of
&, nand X in ¢ ., corresponds to the choice of boundary conditions for the lattice model.

The other main step in the algebraic analysis approach is to identify the half-infinite
transfer matrices of the lattice models with certain intertwiners, or vertex operators, of the
symmetry algebra. For the six-vertex model, the half-infinite transfer matrix is identified with
the U, (sl,) intertwiner

o) VA - VAL @ VD

where V;') isa spin-% U, (5/,\[2) evaluation module. For the RSOS case, the situation is again

slightly more complicated. If A and A" are level-k dominant integral weights, then the U, (?[2)

intertwiner

(n)

o}V (@) V) > Vo) @ V"
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exists if and only if 1 < n < k and the pair (A, )’) is ‘n admissible’ as defined by (2.1) below.
Consider the intertwiner
7V (g

1P, n
VE®V() ——— V(E @ V(e(n) @ V"
where o (aA; +bAg) = (bA| +alyp). Under the isomorphism (1), we can identify

1® q;g(ﬂ)v(") — @ q)i’v(") (é_) ® X;,(C)
(x.27)
where the sum is over all n-admissible pairs (1, ") of level-k dominant integral weights. This
identification defines the operator

X2 (@) : Qemr = Qeomn
(see (2.11)). Itis X i’({) that is identified with the half-infinite transfer matrix of the RSOS
lattice model [3].

The role of impurity operators in the six-vertex model was considered in [4,5]. For vertex
models, the term impurity operator refers to the half-infinite transfer matrix corresponding to
the insertion of a spin-5 line into a spin—% six-vertex model. In [5], this operator was identified
with the U, (sl ) intertwiner

VIV R VA) > VAL @ V"

(which exists for all n > 1).

In this paper, we shall consider analogous impurity operators in RSOS models. The
physical impurity operator corresponds to the half-infinite insertion of Wk('"’") RSOS weights
(see section 3.1) into a lattice made up of Wk(”’") weights. The mathematical object with which
this lattice operator will be identified is defined in terms of the composition

&'y (m—n)

C) ! m-—n
VE @V —— VEI® V"™ @ V()
U (¢) , )
LS VE)® VM) ® Y,
where k > m > n > 1 (see (2.4) for a definition of @51”"”*”’)(;)). Under the isomorphism (1),
we identify

_— ’ (m*n) ’ m %
(‘I);’" ’ )(§)0¢§V (é‘): @CDQV()(()@ZEQ,m@)
)

where again the sum is over all all n-admissible pairs (A, 1"). This equality defines the operator

Zg3m©) : Qen = Qo

It is this that we shall identify with the RSOS impurity operator (a statement of the conjectural
identification is given in (3.9)). R

The plan of this paper is as follows: in section 2, we define the necessary U,(sl)
intertwiners and give some of their properties. In section 3, we recall some of the details
of the algebraic analysis picture of RSOS models and give our precise conjecture about the
realization of impurity operators in this picture. We give the details of a perturbation theory
check of this conjecture in section 4. We present a brief discussion of some possible future
avenues of research opened by this work in section 5. In appendix A, we give the solution of
the q-KZ equation for certain matrix elements of intertwiners and use this solution in order
to compute their commutation relations. In appendix B, we give a proof of the commutation
relations of another type of intertwiner. Finally, we list some formulae for the perturbative
action of our different intertwiners in appendix C.
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2. Properties of Uq(glz) intertwiners

2.1. Preliminaries

In this section, we shall define the U, (5[2) intertwiners we need in our discussion, and give
some of their properties. Let us firstrecall a few details about U, (5[2) (See, e.g., [6] for a fuller
account—the only significant difference from our notation is that we use a different evaluation
module. Note, also, that although we use the notation U, (5[2) we are actually referring to the
subalgebra generated b}Le,, fi,t; ( =0,1).) A weight lattlce P, =Z>oAo @ ZzoA occurs
in the definition of U,(sl,). Let ko and & denote the basis vectors for the lattice dual to P,,
with (h;, A;) = §; ;. Define the level k € Z>( weight (Y € P, by

AP =aA; + (k—a)Ao ae{0,1,... k).
Let P? be the set of such weights, i.e.

Pl=0%aef0,1,... k)
and define the function o : P, — P, by

o(aAN; +bAy) =bA| +aly.
We shall also use the notation

p=q¢""? 5= 2(k1+2) p = (A1 — Ag).

Suppose we choose an integer N such that k > N > 0. Then a pair of weights (A%, )L;k))

is said to be ‘N admissible’ if:
(1) a—be{N,N-2,...,—N}
(ii) a+be{2k—N,2k—N—1,...,N}.
In the case N = 0, we have a = b. When N = 1, the second condition follows from the first.
It is useful to introduce the notation A<N) for the set of admissible pairs, i.e.

(N) ={(x, 1) e Pk X Pk | (A, })) are N-admissible}.

Note that if (A1, A}) € A,((]IV') and (A2, 1)) € A,(CIZVZ), then it follows that (A + A2, 1] + A)) €

(N1+N2)
Ak1+k2

We shall use two types of U, (;(2) module: irreducible highest-weight modules V(1)
V(N)

2.1)

and evaluation modules The irreducible highest-weight module V (1) is generated by

i+l — 0, fori € {0, 1}. We use the
principally specialized spin-% > evaluation module V{( ) deﬁned, in terms of weight vectors

u™ (i =0,1,..., N), in section 3.1 of [5].
We will also need the R-matrix, namely the U, (sl,) intertwiner
RMN g /5) : v @ vV — vV @ v
The normalization is fixed by R(M Mgy = RMN (£)/kM-N) (¢), where
R(M,N)(é-)(u(()M) (N)) — (M(N) (M)) and

N o omintny @V Moo (@M NET S g 2.2)
o=¢ (@PMN =25 g0 (@M =NIE2 s gh) o

a highest-weight vector v;, deﬁned by e;v; = 0, f

(We use the standard notation (a; b)s = ]_[f;io(l — ab™).) This is the normalization that
ensures crossing and unitarity for the R-matrix—see [7] T (this normalization is also the one
that would give the vertex model with R™-")(¢) Boltzmann weights a partition function per
site equal to one).

T Published in a special edition of AJM dedicated to Professor M Sato on his 70th birthday.
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2.2. Intertwiners

We shall make use of the following two types of U, (?[2) intertwiner:

o' @ vy > vare v i) ea Nefl2. k) 2.3)
oM@y vV @ Vo) - Ve eV he P! NeZ.. (2.4)

It is shown in [8] that CDQ/V(N) (¢) exists and is unique up to a normalization if and only if
(A, A') is an N-admissible pair. The existence and uniqueness of @f\N’NJrk) (¢) is shown in [7]
(the k = 1 operator was first introduced by Nakayashiki in [4]). We fix the normalization of
Cbi/v(m (¢) by the requirement
@) v vy @uM 4 where A=A+ (N -2j)p.  (2.5)
Here, - - - means terms involving Fv;,, where F is some product of fj and f; generators. The
normalization of CDf\N’N”‘) (¢) is that given in section 5 of [7].
Now, we shall give the commutation relations of the two types of intertwiner (2.3) and (2.4).
In [8], Frenkel and Reshetikhin showed that the commutation relations of (2.3) take the form

M N N 1y (M )L
RMM @™ @t (6 = 3 op ™ (el )(ZI)CIEN’M)< W v ‘5) 20

nw

where ¢ = ¢/, the sumisover {u' € P,? [ (v, ) € A,ﬁN), (m',A) e A,iM)} and the connection
coefficients C,EN’M) satisfy the Yang—Baxter equation in its face formulation. As a special case,
we have

o A M
C,g )< W ‘§>=5A,v5u,u’5/u0(w

(see [6]). In appendix A, we solve the q-KZ equation to obtain the explicit form (A.7)-(A.12)
of the coefficients C ,EN‘I) and C ,EI’N). In appendix B, we prove that the commutation relations
of (2.4) are given by

RN )@ 0 (0 @ (1) = 0T (0@ ) RV (). @.7)

2.3. Operators on the space S .

Fix & € P,?fn and n € P,? with £k > n > 1. Following [3] and [9], we consider the
decomposition

VE VI =P VR ® Qi (2.8)

reP
Here €2¢ ;. denotes the space of highest vectors
Qg ={veVE®Vm|ev =0, tv=q"").

The existence of this decomposition allows us to use the intertwiners (2.3) and (2.4) in
order to define certain operators on $2¢ ,.,. Namely, we define

XX () Qeyr(©) = Qesmin for (A, 1) €AY (2.9)
Z5 @) Qen = Qe for (A)eA™ (£,6)eA™"” k=m>n

(2.10)
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via the identifications

"= P "X @) @.11)
(A, A)eA”
1y (m—n) ’ m
o) o a0 = P @ @z, 0 (2.12)
(O 2)eA™

It should be clear from the subscripts on which part of V(£) ® V() the operators on the
left-hand side act. In section 3.3, we shall use a single notation for both (2.9) and (2.10), by

defining zEA (0 by zEA () = XF(©).
The commutation relations of X and Z follow from their definitions (2.11) and (2.12),
and from (2.6) and (2.7). We find that, acting on €2¢ ,.», we have

S (h

rep?

S (o,

rep?

§1/§2> Xl (§1)X'\(§2) = X2 (&) X2 (1)

cl/:z) Z @78,,@)

EI
S//

Cl/Cz)-

ey vy

= Z E N m(é‘Z)Z‘g)‘m(é‘l)C(m o n><

Eep

3. The algebraic analysis picture of RSOS models

3.1. The RSOS lattice model

Let us define lattice Boltzmann weights W™ with k > m,n > 1 by

A v
(m,n) n (n,m) n
i <u’ V‘g):Ck <u’ AM

where (A, u), (W, v) € A,(:") and (A, 1), (u, v) € A,E"), and where the connection coefficients
C,E""") are defined via (2.6). Then, it follows from (2.6) and from the Yang—Baxter equation
and unitarity property of R (¢) (see [7]) that Wk(m’") has the analogous face properties

n, m,n m U
%;UW( Z)< * §2/C3> A ’)< zé 5 §1/§2> W, ’l)< N 5
=y wm a/e)wi (L ae
- ~ k 1/63 k A 5 1/62
f §2/§3>

v ;

A A !
(m,n) 1< (n,m) 1% _
Z Wk < I‘L/ v ‘ {) Wk < a v ‘ ; 1> = Sﬂ,a-

0
weP

41/§3>

We can prove some additional properties of Wk("’ Y and Wk(l’”) by making use of the explicit
formulae for these weights given in appendix A. The first property relates Wk("’l) and Wk(l’") :

wny (A M _wamn [V M
" (M’ v ‘§>_W" (/ﬂ A 'C> G-
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The second property is that of crossing symmetry:
n Aoou _ GO am( W A |
Wk( 1) ( , ‘ —q 1;) — Wk(l, ) C 1 (32)
W G, v) Voo
where

(1 —2s(a+1))
T,(1—2s(a+2)

GO A8y =

+

GO®, )‘(k)l) _ I'p2s(a+ 1)).

a e I',(2sa)
Here, I', is the ‘g—gamma’ function defined in (A.10), and p and s are as defined in section 2.1.
We anticipate that formulae similar to (3.1) and (3.2) will hold for the general Wk(’”’").

We shall define our lattice model by associating a Boltzmann weight Wk('"’") with a
configuration of P weights around a face in the following way:

A 2z

n v

Here, one corner is marked in order to give an orientation to the diagram.

The partition function of our lattice model will be a weighted sum over the configurations
of the weights at the corners of faces. In order to specify this partition function in the
infinite-volume limit, we must specify the boundary conditions for these configurations at
large distances from the centre of the lattice. We will choose these boundary configurations
such that the associated Boltzmann weights are maximal. Let us now fix ¢ and ¢ such that
0 < —g < ¢~! < 1. Then from the explicit formula (A.7) we find that the largest Boltzmann
weights Wk(”’l), n > 1, are those of the form

WD &'+ A E+ A
k E+Ai E+ A

g) with (£,&) e AlV. (3.3)
We assume, by extension, that when k > m > n > 1, the largest weights are those of the form

(m,n) é:/ +7 s + U(’?) . , (m—n) 0
W, < Ero(n) £+ ‘C) with (§,8) € A;Z," nePp,. (3.4)

Now, following the approach to RSOS models described in [3] and [10], we consider the (7, n)
RSOS lattice model, that is, the RSOS model constructed in terms of Wk("‘"), n > 1, weights.
The boundary conditions will be labelled by a pair of weights (¢, n) € P,?_n x P? in the
following way: if the position of the central weight is labelled 1, then we consider weight
configurations such that, beyond a large but finite number of sites out from the centre, the
weights at odd positions (along the vertical or horizontal directions) are fixed to be & + n, and
the weights at even positions are fixed to be & + o ().
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The north-west corner transfer matrix Aﬁ\,’; M) (¢) with this boundary condition, and with

the centre weight fixed to A € P, is represented graphically by

ﬁ o
¢
/3 o
A @) = 5 o ¢ ¢ a=E&+1
B=§&+om).
o ¢ ¢ ¢
B
¢ ¢ ¢ ¢
o A

Let He ,;;» denote the space of eigenstates of AI(\?V\',’ ) (¢) in the infinite-volume limit, such
that AS7M(¢) © He yer = Hep. Let | p) denote a restricted path

Ip) = (..., p(3), p(2), p(1)) with (p(¢+ 1), p(0)) € A" for €>1.
Then, He ., will be formally spanned by the path space P ,., defined by
Peyr =p) | p(0) =&+ (), £ = r > 1, p(1) = 1}.

3.2. The identification of Q ;. and He .5

Let us first introduce some extra notation. Define | p; ;) to be the ‘ground-state’ pathin P ;. ¢,
given by
Pen) = Coos Pen(3), pen(2), pen(1)  where pey(6) =& +0"' ().

Also, define vg ;, = ve ® v, € Qg ;g4
A map ¢ : Q¢ .5 — He p; 5 is given in [3]. In our notation, this map is given by

)= Y cp.vlp) (3.5)
[P)EP ;2.
where
c“(p,v)
c(p,v) = lim ———— 3.6)
t=00 ¢t (pg.ys Ven)
(P v) = (Weoean X050V (1) L XS (XD (D). (3.7)

It is a conjecture that (3.6) converges.

3.3. The half-transfer matrix and impurity operators

First, we define the finite path space yPs ., by

NPes = {(p(N +1), p(N), ..., p() [ (p(L+ 1), p(D)) € AL,
p(N+1) =¢&+0" (), p(1) = A}.



8988 R Weston

Let yHe p,5 denote the vector space spanned by yPs: ,.», and define py to be the projection
operator py : He n:a — N'He,y:n. Now we define the operator Nzgf;m(;) by

NZE (@) s e = NHe ot
for A A)eA™ (€ &) eA™” kxm=n>1

N
o - oy ( PE+D) pE+1) ) /
WZEE ©lp) = w ( , ) 1p)-
o \p/>eN% o 41:[1 P p

Graphically, this operator is represented by

g+ lm  E+oNm)

¢

p'(N) p(N)

/47 ;
NZ§ f;m €)=

¢

') r(2)
¢

A A (3.8)

Let |v) € Q¢ 5. Then our conjecture for the realization of NZ?;\:m (¢) in the algebraic
analysis picture of RSOS models is

lim —————— yZ{, (©) o py otlv) = to ZE ], (D)|v) (3.9)
N T "
where the function f, ]f,’"’") (¢, q) is a series in g, whose coefficients are Laurent polynomials in
¢ (this function may also depend upon the values of &, n, A, &" and 1'). Zg}im(g ) is defined
by (2.11) and (2.12) (with Z{}., () = X} (©)).

When m = n, this conjecture gives us the algebraic analysis realization of the half-transfer
matrix of our (n, n) RSOS model. Whenm > n, it gives us a realization of the (m, n) impurity

operator, i.e. of the operator made up from a half-infinite tower of (m, n) weights inserted into
our (n, n) RSOS model.

4. Perturbation theory

In this section, we present the results of a perturbation theory check around ¢ = 0 of our
conjecture (3.9). We fix the values (k, n) = (3, 1) and check (3.9) for m = 1 and for m = 2.
(k,n) = (3, 1) is the simplest model for which both the half-transfer matrix and the m = n+1
impurity operator are non-trivial. The perturbation theory analysis involves three main steps.
Step 1 is an extension of the analysis of the k = 2 case carried out in [3].
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Step 1. First of all, we compute a perturbative expansion for |[vac) € H>A0-A0:3A0 This vector
is defined to be the minimum eigenvalue eigenvector of the corner transfer matrix Hamiltonian
Hcrvm. Herw is in turn defined by

dAI(\?\i\IUaA()?SAU) (é—)

H = —
CTM dz

=1

where AI(\?VIG“’A(’;M“)(;’ ) is the corner transfer matrix of the (1, 1) RSOS model with &k = 3.
We will use the following abbreviated notation for (m, n) Boltzmann weights:

k) (k)

mm (@ b e [ MDA

Wi < ’§>=Wk <)L((Jk) Afik) ¢
C

and we define W,({l’l) by

an( a b L @ —(1,1>< a b ‘ )
Wi ( ‘C) Q) )k ¢

where k"D (¢) and 5 (¢) are given by (2.2) and (A.11).
Let us write out the weights for the (1,1) RSOS model (these come from
formulae (A.8), (A.9)). We have

+1
&(¢) = “”(Zil Zﬂ'c> =1 (4.1)
o (@ a+tl _ L, ()T, (rs) ©,(%
(C) < aFl a ‘ ) _qu(2s+r:F)1"p(—2s+r¢) O(q%?) (4.2)

7EQ) =

atl a 0,(q*¢?)0,(p")
wherer_ =2(a+1)sandr, =1—r_. I, and ®, are defined in equation (A.10). The largest
weight in our specified region 0 < —g < < 1is )7k“i(§).

Noting that o4 (1) = 1, ,B,fi(l) = 0and )7,(”*(1) = 1, our ‘renormalized’ corner transfer
matrix Hamiltonian is given by

o0
Hipg=R=)_€-0y. (4.4)
=1

The operator O, acts as the identity on a path |p) € P*Ao-20:3% everywhere except on the
triple (p(€ +2), p(£ + 1), p(£)), where its action is given by

Oa+2,a+1,a)=0
O¢(a,at1,a) =I;“i(a,a:F 1,a)+* @, a+1,a)

with

jer _ 9857 @) e _ BT @
Here, and elsewhere in this section, we use the abbreviated notation a to indicate the weight
20

Before giving the definition of the constant R, which fixes what we mean by renormalized,
let us introduce some notation for certain paths |p) € Paa, a0:34,- We use the notation
|4) to indicate the ground-state path |paa,a,) = (----- 1010). Then |2¢+ 1), with
£ > 0, will indicate a path which differs from |/} only in that p(2¢ + 1) = 2. Similarly,
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[2¢;+1,2¢, + 1, ...,2¢y) denotes a path that is the same as |J) except that p(2¢; + 1) = 2,
pRe+1) =2,...,pQ2ey + 1) = 2. Finally, [2¢ +3,2¢ +2,2¢ + 1) indicates a path for
which p(2¢ +3) =2, p(2¢+2) =3 and p(2¢ + 1) = 2. In steps 2 and 3, we will use a very
similar notation for paths in other path spaces—but we will try to avoid confusion by always
specifying which path space we are dealing with.

Now we come back to the meaning of (4.4). R = Y-, £- Ryid is fixed by the requirements

Hirylvac) =0 4.5)
(A|vac) = 1. 4.6)

The r superscript on H( ., indicates this choice of (re)normalization. The conditions (4.5)
and (4.6) fix R, to be

Ry =™ Ry = (&'~ + b (2¢ + 1]vac)).

It remains only to solve H{p,|vac) = 0 perturbatively by expanding both H/.,,; and |vac)
around g = 0. We find

|vac) = |@)—qZ|zz+1)+q2< Z |2z1+1,2zz+1)+22|zz+3,2z+1>>
4

>0 Y4
+q3<22|2€+1)— > R6+1.26+1,265+ 1)
L C>3>0>>03

=2 Y 26 +1,26+3.20+ 1) =2 Y [20,+3.26,+ 1,2 + 1)

0>3>0+1 >0,
—52|2£+5,2z+3,2z+1>—Z|2z+3,2z+2,2e+1))+0(q4)

4 J4

(4.7)

where £; > £, means £; > £, + 1.

Step 2. In this step, we will compute t(Jvap, ® va,)), L(X(l) (&)|v2a, ® va,)) and
UZG5.5(0)|v2n, ® va,)) perturbatively. X(¢) and Zig.,(¢) are defined by (2.11) and (2.12),
and ¢ is defined by (3.5)—(3.7) (recall that we are selectively indicating the weight A by the
integer a).

Tofind¢ : ¢, » — He .2, we must calculate the perturbative action of Xj\v (&) 1 Qg yir —
Q¢ o~ To do this, it is useful if we make the identification

Q¢ pa. = Homy, &, (V(2), V(E) @ V().

Then for o € Hoqu(;[z)(V()L), V(E) ® V(n), XQ'(C)(a) is defined via the commutative
diagram

1o o7 ) "
VE) ® V) VE ® Ve @V,
. . X} @)@
V(@)

V) Yyvahe vy
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Let us list the first few highest-weight elements of the various V (£) ® V () that we shall need
in this section. Note that if w is such a highest-weight element, then we have the identification
w=a(v;).

In V(2Ap) ® V(Ayp), we have

()

= V25, @ Va,
@ 2 1
X7 =1, ® fova, — [2] — fovaa, ® Va,
o 7 g
X, ) = —Uon ® fofifova, — =75 fovaa, @ f1fova, + =7 f1fovan, ® fova,

2] [w
6 1
T 2R - 12))

m2
(fifs + (L =13D fo fi fo)van, ® va,.

InV(2A)) ® V(A)):

x1(1) = vap, ® vy,
O 1 7 .
%) [2] v2a, @ fofiva, — [2] 7 fovan, ® fiva, ﬁflfovao ® va,
3) qz q2 i
X = mvao ® fo fiva, — mfovzlx0 ® fofiva, + mfo von, ® fivm,
o
—— 2
21 — 2] (fofifo — f1fo)van, ® va,-

In V(A1 + Ag) ® V(Ay):

1)

Vi = Ua+a, @ Vg,
y1(3) = VA,+40 ® foVA) — GS0VA 44, ® V4,
1 q4
v = mvmmo ® fifova, — qf1va+a, @ fova, + m(flfo = [B1f0 /1A, ® Va,

1
y§3) = va]+Ao ® fofifova, — [q?]fovAon ® fi fova,
4
+1_—[3]2(f0f1 = [B1f1fo)va,+a0 ® fova,
1 _61[3]2 (fo 1 = B1fof1 fo)va,en, ® Va,-

In V(A] + Ao) ® V(A])

@ (M o _ 03 @ _ (D o _ 0
Vi =N Yi =0 YV =W Y =0

where the bar operation exchanges 0 and 1 indices, e.g. yl3 = Ua,+00 @ f1VA, — Gf1VA 40, ®
. The notation is such thatx(a) €Q,,, Q) and y( 9 e Q) aga 0o (with j € {0, 1}).
s jsha

We can then calculate the perturbative action of X} () on these vectors by making use of
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the perturbative action of dD"(")V(l)({) and V" (¢) given in appendix C. We find
X5 =" + 2" +
X)) = §°> = X°(;>(x “)=c*2<q—q3)x§°>+
X3 ") = —¢qx® — gt +
PO 6) =7 A =g = 2lg = g+ “8)
@) =Y —qe0” + - '
X)) =7 g — ¢))x(" +c‘1<1 gHx" +
5O =2 + - X3(c>(x(2>)——< —2¢%)xY +
X2 = ;—2 & qxé”

and

Xé(;)(y{‘”): -y W rgys+-

x1<;)(y§°>):§i< —q3>y“>+1( — )y +
XV = t(—g+¢*)y” +
X?<;)<y2”>=§<1—q Y+ (=g + )y +
3OO = yP + 2P+

XOoM) = - pla-a Hy? - qzyéz)
X307 = y(“ 2’y +-

X365 = = (q " —q yé”
X300 = ;( a+a)y +-

X306 = 2(1 — Y (=g + Py +

1
X200 = é_ W gy +-

X2 = F(" — ¢y + E(l gy +

(4.9)

where each of the coefficients is given to order ¢°.
Let us go through the example of how to compute Xé({)(xl(o) ) (or rather X(l) (;)(a@),
where x(a) = a[(a) (vkgs))—the x and y appearing in (4.8) and (4.9) refer in this context to the

assocmted homomorphisms). First of all, it follows from (C. 1) that we have

(1® @3 ()x” = v2a, ® (vAl ® U — qfiva, ® uol +q° ] L fofion, @ me?

—q mf1f0f1vm®uoi +- ) (4.10)

Then, we use the perturbative expression for @5
appendix C, from which it follows that

( (1) ® l)q)2A0+A1V (C)U ( ) ® u; qflxi(l) ® uO;

2A°+A‘V( )(;“)v3A0, given in equation (C.3) of

[4]+[6 ———(B1fofi — fifo)x" @ui+---. (4.11)
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Finally, we compute the coefficients ¢;(¢) in the expansion Xé(;)(aio)) =3, c,-(;)al.(l), by
substituting the right-hand sides of (4.10) and (4.11) into the defining equation

1@ eh @ = > a@@” @ DR (©)usa,. (4.12)

1

We find ¢;(¢) = 1 and ¢2(¢) = ¢2¢> to order g3. These are the coefficients given in the first
line of (4.8).

In a similar way, we can compute the action of Z(‘)g;z(g), which is defined by (2.12), i.e.
through the commutative diagram,

INED 4L 1,2
op MV ) ) ©

—_— —_—
V(2A0) ® V(Ag) VA + A9 ® VY @ Ving) VA A @ Vap e VY

o 2§32 @)
2A1+AgV @
e300

V(3Aq) VAL +Ag) ® VP

Making use of equations (C.2)—(C.8), we find

(2] o)
—y2 .« ..
[41[3] — [2]
It remains to compute L(xfo)), L(X(l)(g“)(xfo))) and t(Zé(z);z({)(xfO))). Let us go through

the example of L(xfo) ).  We must calculate the the path coefficients c(p,xfo)) defined
in (3.6) and (3.7). As an example, let us do this for the path [3) € Pop, 434, First,
using (4.8), we calculate the denominator c‘(|¢), xfo)) of (3.6) for several values of £. In

Z3,O) =y + 22 (4.13)

fact ¢t (|9), xl(o)) = 1+0(g*) for all £, and so, since we are computing only up to order ¢, it
never enters the ratio (3.6). We find the numerator c*(|3), xfo)) has the following values:

A013), x?) = XY HXIMHXIMXEDIX?) = —g +24¢° + O(¢°)

A3), 2 = P Ixi XX XM XDy = —g +24% + 0(g”) ‘i
. (4.14)

ct(13), x\”) = —q +2¢° + O(g).

Hence, from (3.6), we have c(|3),x{0)) = —q +2¢° + O(gh. c(p,xfo)) of any path
[P) € Pang ne3a, can be calculated in a similar way. We computed the coefficients of a
range of example paths in L(xfo)) to order q3 (to be precise we considered the paths |0), |3),
15), 17),17,5), 19, 3), 19, 5), 111, 5),17,5,3), 19, 5, 3), |11, 5, 3) and |5, 4, 3)). We found that
the coefficients of each of these paths were equal to those in expression (4.7) for |vac) , so our
perturbative results are consistent with the identification L(xl(o)) = |vac).

In a similar way we have computed the coefficients of certain paths in P ;.| contributing
to t(X}(2)(x”)). The notation for paths in P 1. is such that |#) = (---010101), and |2¢)
differs from |/) only in that p(2¢) = 2. Listing the path in P .; and then the coefficient
c(p, Xé ({)(xl(o))), we have to order ¢°

14) 1

12) —g+(1+¢Hg° (4.15)
12€) -1 —q+2q3.
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Finally, we have computed to order ¢* the coefficients for certain paths in P;;., contributing
to 1(Zg, 2(;“)|x(0))). Here the path notation is |#) = (- - - 121212), |2€ + 1) differs from it only
in that p(2¢€ + 1) = 0 and |2¢) differs from it only in that p(2¢) = 3. Listing the path and then
the coefficient c(p, Zég;z(g“)(xlo))) we have

[ 1

12) -q+2q°

120+ 1), —q+3¢° (4.16)
12€) -4 —61+343-

Step 3. In this step, we carry out a lattice perturbation theory calculation of y X, (1] (&) o py|vac)
and NZ(%;Z(;) o py o |vac). We compare with the results of step 2 and hence check the
conjecture (3.9).

First we shall calculate the action of NX(I) (¢) on py|vac), where NX&({) is defined to be
the lattice operator (3.8) in the case when (m,n) = (1, 1). Define a, 8% and y“* to be a
factor of 1(¢2)/ (k™D (0)n(c™2)) times @3(¢), B5(¢) and ¢*(¢) respectively. Then, as a
series in ¢, we have a(¢) = O(1), B%(¢) = O(q), y*£(¢) = O(1).

Let us compute the coefficients of |J) y and |2£) in NXé (¢) o pn|vac) (where |p)y
pnlp), and |@) and |2¢) are as defined above (4.15)). We introduce the notation y =
(') and define £y (¢, q) by

f(l D { 1+ (—=1+272g*+0(@g"h for N even @.17)

1+0(g" for N odd.

Then, the coefficients of |)y, |2)y and |2¢)y (£ > 1) in NX(%(Q') o py|vac) when N is large
and even are given to order g3 by

yN —qap"ty" PNV —2)/2= £V @ 9)
ﬂ17 N— 2+( q+2q )0127/“)/17)/1\, 4 quzﬁH,B(F) N74(N_4)/2

g7’y Ty Ty YO =22 = @ ) (—g + (1477 and
aﬁl—yN—Z_'_( q+2q3)a2yl+yl ,}/N 4+( l]+26]3)ﬁ ,31+J/2 )/O+)/N —4

+H=q +2¢))* BTy N THN — 0)/2+ P By My Ty N TON — 42

+2¢%ap" >y YN = 1@ ) (—g +297)
respectively. When N is large and odd, the three coefficients are
y0+yN 1 q(X,B]+ 0+ N— 3(N 1)/2 f(l 1)(§’q)

05,317 0+ N— 3+( q+2q )a2 1+ N-3 —qa ﬂl+I317y0+yN75(N_3)/2
+q oy gy N 5(N D/2=f"E(—g+1+8Dg")  and

Olﬁ ,}/0+ N— 3+( q+2q )az l+ N— 3+( q+2q )ﬁ ﬂ1+ 2_()/0+)2)/N_5
+(—q +2q7)a ﬂ”ﬁ"ymyN YN =5/2+q By yV (N = 3)/2
+2q%apy Ty Yy My N = V(L g) (- +207).

Comparing these coefficients with those of (4.15), we see that our perturbation theory

calculation is consistent with conjecture (3.9) in the case (m, n) = (1, 1).

In order to consider Zég;z(g) o py o |vac) we must first introduce some notation for

Boltzmann weights. There are six independent Boltzmann weights, the formulae for which
are given by (A.8), (A.9).
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We denote them by
n e (02| wen (31
omwen (D L] mwen (2 2)0)
st (53] wen (20
=i (3 3] =wen (22 )
amwe (0l —wen (2 2]0)
=wen (02 |) =wen (3 1]
comwpn (D3] =wen (2 0)o).

The notation is such that an e superscript implies that the NW and NE entries are equal, and
a d superscript implies that they are different. The subscripts give the values of the (NW, SE)
pair of entries (for one of the members of a pair of equal Boltzmann weights). B weights have
zero or two horizontal pairs in which the entries are equal, C weights have one such pair. As
g-series, the A and C weights are O(1) and the B weights are O(q). Now we compute the
|9) 5> |2€) 5 and |2£ + 1) contributions to Zoo ,(¢) o py o |vac) (where |#), |2€) and |2€ + 1)

are as defined above (4.16)). Let us define f 2. 1)(g“, q) by

(4.18)

f(z 1) { 1+4%/22 +0(@gh for N even

1+4¢°/2+0(@q"h for N odd.

Then, the respective coefficients of [#)y, [2)y, |26+ 1)y (£ > 0) and |2¢)y (£ > 1) in
Zég;z(g) o py o |vac) when N is large and even are given up to order g* by
CY+ BV (=) (N = 2)/2 = 1PV (¢, )
ABYHCY T + ABKHCHCHLCN H(—g) = iV, ) (=g +247)
CHCHC (g +2¢") = 7V (6. ) (=g +39")
ABS,CN72 4+ BY B, CS CS,CV H(—q) + ABS,CLCS,CN " (—q) = £V (L q)(—q +3¢°).
When N is large and odd, they are
CioCN ™'+ BYBLCHCV P (=) (N = 12 = £7V (2, 9)
ABL,C5,CN 7 + AB}CHCY P (—g) = £ V(8 @) (—q +247)
CoC5HC5CN 3 (=g +2¢%) = £V (€ 9)(—q +3¢°)
AB?chocN_3 + B, Bf,Cg, (C5)>CN 7 (—q) + AB},C5,CV 7 (—¢q)
V@ (=g +39).

Comparing these coefficients with those of (4.16), we see that our perturbation theory
calculation is consistent with the conjecture (3.9) in the case (m, n) = (2, 1).
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5. Discussion

We have constructed a realization of impurity operators within the algebraic analysis picture
of RSOS models. It is now a straightforward step to extend the approach described in [10] in
order to write down trace expressions for correlation functions of impurity insertions in these
models. It should also be feasible to construct a free-field realization of our impurity operators
within the scheme of [11], and to compute integral formulae for the correlation functions.
Suppose n = 1. Then if g were equal to 1, our definition (2.11), (2.12) of X and Z,,
would coincide with the coset construction of the Virasoro g-primary fields ®(; ) and @, n+1)
respectively. A g-Virasoro algebra was constructed in terms of a free-field realization in [12],
and in terms of a g-coset realization in [9]. A definition of g-primary fields, or g-vertex
operators, was given in [13] (see also [14]). We anticipate that our X and Z,, give a coset
construction of the g-vertex operators which are deformations of @ 2, and @ im+1).
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Appendix A. Commutation relations of &}V (¢) and ®)V"(¢2)

In this appendix, we solve the q-KZ equation in order to derive the commutation relations for
@’;/V(” (¢1) and CDQ’V(") (&2). In this way, we arrive at the explicit expressions for the connection
coefficients C,i"’l) and C,El'").

In order to formulate and solve the q-KZ equation it is convenient to work with a different
evaluation module, namely the homogeneous evaluation module (V,), defined in [6] in terms
of vectors vi(") ,i €{0,1,...,n} (this module is labelled as V™ in [6]). The isomorphism

between this and the principal evaluation module VC(") used elsewhere in this paper is

Ca(0) : VI = (V) u — el (A.1)

1
2
where cﬁ.") = [;’] g7~ and we identify ¢2 = z. [Z] is the standard g-binomial
q q

coefficient.

We define normalized homogeneous intertwiners

()1 V) — V() ® (Va):

m L.
J
exactly as in section 3.3 of [6]. The relation to the principal intertwiners defined in section 2.2
above is

(A2)

Uy > U+ where A=pu+m—2j)p

O (@) = C @B @ =D where A=t (0 —2))).
Now define the matrix element
W (21 /22) = (W] @2V" (2) DL (2)IA) € (Vi)z, ® (V).

The g-KZ equation for W™ (z,/z,) is given by equations (A.18) and (A.19) of [6]. Let
A = A% and define the function y (z) by

a
3+n.

(P24 P 4N (P24 P 4o
(Pzg°™; P, 4N oo (Pzg™' 7" P, qH)oo

y(2)
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Then solving the q-KZ equation, we find the following.

When p = Ay,
. =2s(1+j) 2s(a+1—n+j) n n
YD (z) = V(Z)(¢’ ( 25+ 1) s zpg'* U§ ' ® Uf”
+ I o e
q 1_q2(a+1)
1=2s(1+j) 2s(a+1—n+j) 1+n ) .0 )
: (0 I . A3
X¢< 1 42s(@+1) Pa ) Vi ® % Ay
When u = A_,
" 2S(—l’l+j—1) 1—2s(a+j+1) n n
W ’”(z)=7/(2)(¢( | —25@+1) szpg v§)®v(<)1)
L l—q¥
—2(a+1)+j _
+2pq 1 — pg—2@+h
1+2s(—n+j—1) 1=2s(a+j+1) n\ .0
X ( 2 25a+1) sopg™ ) @) (A
When v = g,
—2s(1+j) 1—2s(a+j+2) I
G () = :2pg"™" ) vy @ vl
@ =r@|¢ | —2sa—n+2j+2) P ®v;
. 1— 2(n—j)
+zq' " 1

1— p—qu(a+2—n+2j)

(D ) en) s
Whenv =pu_,
v =vo(o (D T et ) el
g~ %ﬁz—]ﬂm)
o (1 + 2s(—1n++2£(; i)nzj(;;)— n+ ), qu1+n) NUPS v;n_)}), (A.6)

In all cases, j is determined uniquely by the requirement that weight (¥ (z)) = A — v.
The function ¢ is the basic hypergeometric series

a B\ _ p* p’ )_ N (P P (PP P,
¢( Y ,z)—2¢>1< pr % _,,2:{: 7 Pupi P

The normalization of the first term in each of (A.3)—(A.6) is fixed by (A.2). The normalization
of the second term follows from the q-KZ equation, and is computed by making use of the
identities

1—p® 1
1 —zp%e (ayﬁ; pz) —(1-2)¢ (ayﬁ;z) =z(pf — p”)ﬁqﬁ ( ;Lfyﬁ; pz)
(1 —zp**F*)¢ <ayﬂ; pZ> —(1—zp )¢ (ayﬂ ; z)

_,.(1=p% l+a B
— _ B A .
=—z(1-p y)(l_py)qﬁ( 14y Z>
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Given (A.3)—(A.6), the explicit form of the homogeneous R-matrix R (z) given in
section 3.2 of [6], the connection formula (B.8) of [6] and the isomorphism (A.1), one can

then compute the connection coefficients C]E"’l) and C,El’") defined in (2.6). We find

an A M
qﬂ<u,v

)

1 - A
_ (n,1) w
5) = g ( W

where
o + sy 1= J 112 (@)
C(n,l)( AV ) _ oot aenln —Jj+
Cln o ) y1r ) |
L Tp@s@+2j —mly(l —2s(a+ 1)0,(pg2a+Dn=12)
Iy +22S(j —1—n),(25/)O,(g1*¢?)
A (A Vs _ i)
“ ( Ao gh) =0
y L,Q2sa+2j—n)I',(2s(a+ 1))@p(q—21+n+1§.2)

T,Q2s(a+j—n)T,Q2s(a+j+1)0,(q"*"¢?)

with j givenby v, + (n — 2j)p = X, and

Ao (A v Y [()
G <A+v %)‘q]m;%
L Do(1=25(@+2j —n+2)F,(1 = 2s(a + )0, (g%

Fp(1—=2sa+j+2)T,(1 —2s(a+j+1—n))O,(q"+"¢?)
. 1 2
C—,(n,])< A V_ ‘ ) — %(zj,,ﬁ.]) [] + 1]2 77({ )
Cl e )7 [n— 1t 1)
,(1—2s(@+2j —n+2)I,2s(a+1)0,(g>2*31¢2)
L,(1—=2s(1+ j))TpQ2s(n — j)O,g"+"c?)

(A7)

(A.8)

(A9)

with j given by v_ + (n — 2j)p = A. The functions I";, and ®,, are defined as usual by

_ (PP

=——Z(1-p'* 0,(2) = (P; P)oo(Z: P)oo(PZ "5 Ploo
(P% P)oo

Ip(2)

and n(¢) is defined by

l+n. 3—n.

~(pzg"" P g oo (P24 P 4o
(Pzq4" ™" P, 4o (P24*™; P, M

o
with  (a; b, €)oo = 1_[ (1 —ab™c™).

ny,ny=0

_ D v u
)= (G i)

such that the Boltzmann weights of section 3.1 are given by

n,1 A 1% n,1 A 123
Wlf)(' §=C,£)M,v;.

woov

1n(z)

We also find

1, Au
qw(u/v

(A.10)

(A.11)

(A.12)
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Appendix B. Commutation relations of <I>()\"’"+k)(c )

In this appendix we give a proof of the commutation relations
RO (@)@ (@)@ (02) = 05 @)@ (@) R (@) (B.1)

where ¢ = ¢1/¢. The proof will be inductive on the level k.
(B.1) is shown for k = 1 in [7], and we make the assumption that it is true for k = £ — 1.
Let L = u + A; and consider

RO @)@ ) g @)@ (@@ N (@) (B2)

which is an intertwiner V" ® V. ® V(1) ® V(A) — V(1) ® V(A) ® V"0 © V0.
Since ®"""D(¢)) and @X’fﬁfl’"m (&2) act on different spaces, they commute. So (B.2) is

o(p)
equal to

p £—1,n+0 £—1,n+0 =1 =
RO @@ (@)@ (@) g (e @ (@),

Using (B.1) when k = 1, this is given by

cb%:f—l,n%)(é_z)q)s\n;(—l.nw) (CI)R(anl,anl) ({)q)((rn(,;t;-(—l)(é_l)(bf:q,nﬁfl) ({2)
Now using (B.1) when k = £ — 1, this becomes
q)gclﬂ-jfl,rﬁé) (42)©X1i+éfl,n+l) (Cl )cp((yn(,lrz;ffl) ({2)¢’;f’n+z71) (CI)R(n,n) ({)

(n,n+0—1)

(1) (&) we thus arrive at the equality

Using the commutativity of <I>Xi+e*l’"+é) (¢1) and @

R(n+€,n+£) (g)(q>5<l:€fl,n+€) (é_l)q)gn(,;'l;Kfl)(é_l))(qjxi+éfl,n+l) (4_2)@};,,”-%_1)(;2))

= (@Y ()@l TV (@) (@G T () @D (@) R (7).
(B.3)

Itis shown in [7] that (DXL,-%_LH[) (O@m=D() = (<I>f\"+e_1'"+[) (¢£)®id) when restricted
to V(A) ® 2,4, With A = p + A;. Hence restricting (B.3) to V(1) ® 2, a,:1 gives (B.1)
with k = £. This completes the proof.

Appendix C. The perturbative action of intertwiners

In this appendix, we list the perturbative action of the intertwiners used in section 4. We have

3
(1
N Ova, = va, @l —afivn, @ugt + T fofivn, @ ul?
q' 1
—Eflfoflvm Qui’d+- - .
cI)A()+A1V(l) ({)v _ an o
2A¢ 280 = VAg+A; & Uj qf1vapen, ® Uy ¢
4
+] _6][3]2 (f1fo — [B1foSD)vaga, ® uil)gz R (C.2)
[¢9)
@%22+A1V (E)v3n, = V2ag+n, ® "‘51) = qf1Vay,+0, @ uél)é“
—q5 1,2
YT [6]([3]f0f1 = f1f)vasy en, @ Uy T+ (C.3)
3
' q
DN ()vangea, = vin, @ ul — = fovan, ® ul¢

(3]
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5

q )
C4
[2][3] ——— 1 fovsa, ® ug ¢ +- (C4)
P
q’?ztﬁﬁ:w )(§)U2A0+A1 = Upgs24, ® ”( ) — [2] — f1Vap24, ® ué”(
5
+m([4]foﬁ — 211 fo)vagsan, @ ui ¢ +- (C.5)
oV o q*" @, .49 @ ,2
340 (§)v3n, = V2n 40, QU [2]172 S1v2a 40, @ u7C + [Tfl V2A+A, @ Uy
7
[4][3] ([4 Jofi = 2111 fo)van,+a, ® u(2)§_2 + - (C.6)
2
c1>(1 2>(§)(u<1) Qupy) =08, ® u(2> [‘21]1/2 fiva, ® ; + —f0f1vA1 ® u )gz )
- . g\ X
q>5\(; )(g)(“( "®ua,) = 2 ]1/2UA1 ®u” — qfiva, ®u(())§
q7/2 s
+[2]—3/2f0f1v1\, ui”*+- (C.8)

All other intertwiners we need are given by a (f;, Aj,uin)) < (fiois Ay, u,(:fg)
symmetry, for example the expansion

AOV( (L)va, = va, ®u0 — qfova, ®u\Vz +¢° 0] flfovA0 ®M(1)§2

—q mfofl fova, ® M(1)§3 +-

follows from (C.1) under this symmetry. This symmetry is one of the benefits of using a
principal evaluation module.
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